MPLS LDP协议简介

2020-09-14 16:17:58 云杰通信 99

MPLS LDP协议简介

  MPLS LDP协议在[RFC 3036]中详细定义,LDP的协议报文除Hello报文基于UDP外,其它报文都是在TCP之上,端口号为646。当发生传输丢包时,能够利用TCP协议提供错误指示,实现快速响应和恢复。与BGP相似,这种基于TCP的可靠连接使得协议状态机较为简单。

  LDP PDU 头部

  版本号:16bit,目前LDP只有一个版本,版本号始终为1;

  PDU长度:为16bit,值为LDP PDU头部以后的数据部分的长度,不包括LDP PDU头部;

  LDP Id:长度为48bit,前32bit为LSR-ID,后16bit为标记空间标志,全局空间为“0”,局部接口空间为“1”。如:收到的LDP PDU中的LDP-ID为192.168.1.2:0,表示对方的LSR-ID为192.168.1.2,标签空间为全局空间。

  LDP 消息格式

  U:这一位总是为“0”,代表可识别的消息,为“1”代表不可识别的消息;

  类型域:协议根据这个域识别不同的消息;

  长度域:指示出长度域之后的数据部分的长度;

  消息ID:用来唯一地标识这个消息,如果消息为Notification,则ID与导致产生Notification的消息ID相关联。

  按照功能来划分,LDP消息可分为4种类型消息:

  邻居发现消息:在启用LDP协议的接口上周期性发送该消息

  Hello消息

  会话建立和维护消息:用来建立和维护LDP会话

  Initialization消息

  KeepAlive消息

  标签分发消息:用来请求、通告及撤销标签绑定

  Address message

  Address Withdraw message

  Label request message

  Label mapping message

  Label withdraw message

  Label release message

  Label abort request message

  错误通知消息:用来提示LDP对等体在会话过程中的重要事件

  Notification消息

  标签空间

  可分为全局标签空间和接口标签空间,全局标签空间表示LSR为特定目的地的FEC产生唯一的Label,接口标签空间表示LSR在每个接口上为特定目的地的FEC产生唯一的Label。在帧模式的链路上为全局标签空间,在信元模式的链路上为接口标签空间。LDP报文中的LDP-ID域中指示出标签空间值。

  上游LSR和下游LSR

  对于某FECIPv4前缀)来说,C是B的下游路由器,A是B的上游路由器

  倒数第二条弹出

  在实际应用当中(如MPLS VPN),对于Egress LSR在弹出最外层Label后还需要进行其它较复杂的三层工作。而事实上最外层标签的作用在MPLS VPN的应用中只是为了将报文送到Egress LSR。因此,在倒数第二跳LSR已知报文下一跳的情况下,可以将最外层的标签弹出后转发到最后一跳LER,而不必进行标签替换。这样使得最后一跳LSR的工作相对简单了一些。因此在 [RFC 3032] 中规定,最后一跳LSR发给倒数第二跳LSR的标签为隐式空标签“3”。据此,收到标签“3”的上游LSR就知道自己是该FEC的倒数第二跳,就知道自己在用该LSP转发Label报文时,应执行倒数第二跳弹出。

  (倒数第二跳弹出)

  1 DU(Downstream Unsolicited)

  下游LSR如果工作在DU方式(下游主动分发)下将根据某一触发策略向上游LDP邻居主动分发标签。LSR-C标签分发触发策略是为直连32位掩码的路由分配标签,因此LSR-C通过Label mapping message向上游LDP邻居主动通告自己的直连路由172.16.1.1/32的标签,Comware系统缺省工作在DU方式。

  2 DOD(Downstream On Demand)

  下游LSR如果工作在DOD方式(下游按需分发)下,只有在接收到上游LDP邻居的Label request message后才回应Label mapping message分发标签(针对标记请求消息所指定的FEC)。LSR-C工作在DOD模式下,LSR-A的触发策略生效(LSR-A转发到172.16.1.0/24的报文流量达到设定阀值)后将向172.16.1.0/24的下游发送标记请求消息Label request message(请求172.16.1.0/24的标签)。最终LSR-C收到请求,发送Label mapping message响应。

  LSR如果工作在独立控制方式下,如果标签分发方式是DU,即使在没有获得下游标签的情况下也会直接向上游分发标签。在标签控制的方式上显得很“独立”,不依赖下游LSR;如果标签分发方式是DOD,发送标签请求的LSR的直连上游LSR会直接回应标签,而不必等待来自最终下游的标签。

  在LSR-B上采用独立控制方式。LSR-B路由表中有172.16.1.0/24的路由,但没有收到下游来的标签绑定。由于LSR-B工作于独立控制方式,所以对路由表中的所有路由都向上游发送标签。继而,无论LSR-A工作在独立模式还是有序模式,将向上游继续发送标签。这时,如果有目的IP为172.16.1.0/24的报文进入LSR-A,它将采用MPLS转发。但数据到LSR-B后,由于没有关联172.16.1.0/24的LSP,所以采用传统IP转发。

  2 有序控制方式(Odered)

  LSR如果工作在有序控制方式下,如果标签分发模式为DU,则只有收到下游LSR分发的标签时才会向自己的上游LSR通告标签,如果没有收到下游的标签映射则不向上游LSR通告。Comware系统缺省工作在有序方式。

  LSR-B路由表中有172.16.1.0/24的路由,但由于LSR-B没有收到下游的标签且工作在有序模式,因而不向上游通告关于172.16.1.0/24的Label。如果LSR-A收到目的IP为172.16.1.0/24的报文将采用传统IP转发。可以看出,在有序控制方式下,是否向上游LSR分发标签取决于自己是否收到下游LSR的标签。

  1 自由保留方式

  收到无效的Label通告后(没有对应的IP路由或路由通告与Label通告的下一跳不一致),虽然不生成LSP,但在标签绑定表里存储,并且LSR向上游通告其它FEC的Label绑定时也不占用这些标签,这种方式的优点是LSR应对网络拓扑变化的响应较快,缺点是浪费标签,所有不能生成LSP的Label通告都需要保留。

  LSR-A工作于自由保留方式,对于FEC为172.16.1.0/24将生成下一跳为LSR-B的LSP,LSR-C发来的Label通告将保留。如LSR-A和LSR-B之间的直连链路down掉,对于FEC:172.16.1.0/24的将很快生成下一跳为LSR-C的LSP。

  2 保守保留方式

  工作于保守保留模式的LSR收到无效的Label通告后将不存放到标签绑定表里,在向上游通告Label时可以自由使用这些标签。保守保留模式的缺点是对拓扑变化的响应较慢,优点是节省标签。

  LSR-A工作于保守保留模式,对于FEC为172.16.1.0/24将生成下一跳为LSR-B的LSP,LSR-C发来的Label通告将不保留。如LSR-A和LSR-B之间的直连链路down掉,对于FEC:172.16.1.0/24将不能很快生成下一跳为LSR-C的LSP。